iy §cas|

The Challenge of Quality in
Multi-Tier, Multi-Language
Applications

Dr. Bill Curtis
SVP & Chief Scientist
CAST Software

© CAST 2008

]y §casr|
1 Day’s Offerings from CIO Online

Security Flaw Found in Safari for Windows TUE, JAN 13, 2009 16:44 EST

A flaw in Apphe's Safan browsar for Windows cousd be expioiled by hackers ina bid o sieal] Sal@sforce.com Nailed for Downtime:

SISDAMEN o o Ve SURTB/S, SRR S, 0Oh Scqmoe anfiedla deveiopat But Your In-House CRM and ERP Record
May Be Worse

POSTED BY: Thomas Wailgum in Hews
TOPIC: Applications
BLOG: Enterprise Software Unplugged
Rb CURRENT RATING: wragvirdkdk COMMENT: 1

WY Loawn & commant
By Cam-Amn Skenes

anisary 14, 2008 — PC Advisor {UK) — A faw in Appie's
St trowses dor Windows cond by axploted by hackars i 3
bid 19 steal persenal information from web surfers, says an
open source software develaper

Acconing (o Brisn Mastwabrook, the frw can only be On January 6, Salesforce.com, the software-as-a-
exploited when Satari interacts with RSS feeds. service CRM vendor, suffered a "semvice disruption” at
12:39 p.m. Pacific time_ The technical reason for the
outage: a core network device had failed, due to memory
allocation errors. The backup plan, which was supposed
to trigger a cut-over to a redundant system, also failed.

downtime

The cause of the dead air
Network/Systems Management Alert

Making Sense of Offshore Outsourcing 2.0
As outsourcing conlinues to evobe, new yardsticks are needed 1o assess successi engagements and
measure ROL These tips will help you capitalze on the benefits offered by offshore, nearshore and onshore

2
o cAsT 2008

outsourTing

M] Jcasr
Why Do New Features Take So Long?

Unusable or setback to progress

Worse than in-house results

What results are you getting
from your outsourcers?

Source: Outsourcer Quality Survey Results
Software Development Magazine March 2006

. { Same as in-house results
Better than in-house results

How do maintenance
staff spend their time?

Source: Software Quality, Producing
Practical and Consistent Software
Mordechai Ben-Manachem

Developing the changes

Understanding the code

Testing the changes

Documenting the changes

ML Lcesr]
Business Agility Is Limited by App Quality
||

Ossified, contorted,
complex legacy code

Harmfully complex
Hard to change
Easy to hack into
Costly to maintain

Speed in responding to
the market depends on
the ease of modifying
business applications

= Secure and robust
= Easy to change

= Cheap to maintain
= Faster to build

Well-engineered.
high-quality code ¢

4
@ CAST 2008

|
'm
| |

5
lecasT 2008

L] Jcasr]

Application Software Quality Iceberg

degraded performance

TEST j

defects

complexity

security

QUALITY
CHARACTERISTICS

coupling

cohesion

QUALITY EVALUATION

architecture

robustness interoperability

B

scalability

poor response time

excessive costs

outages

overruns

program structure

coding practices

testability
reusability

maintainability

flexibility

understandability

Steve McConell (1993), Code Complete.

|
'm
[|

6

jo cAST 2008

] Jcas

Godot’'s Gotta Be in There Somewhere

Pro<|juct Resource pools?
N Catalogue Connection pools?
? hosts Error handling?
? threads Timeouts?
Retail Order Entry Credit Card
Website Application o Application
? hosts | ? hosts ~ | ?hosts
?K threads ? threads ? threads
Shipping Express Service
Application Application
2 hosts - | ? hosts
? threads ? threads

Siloed Developer Skills

L] Jcasr]

. Enterprise Connectors Presentation
Applications 8 Tier
W JSP/JSTL /JSF
ERP x ¥ .
e 1. — Web Business
R SUTE iness 3 .
sl oo Services STRUTS - MVC Logic
Webmethods - Tier
SIEREL - |
— g
Legacy] Java Services T
A 5 n
Applications
cics | -
COBOL Connector B I T —t - = . d
Data Tier
Batches EJB — Hibernate - Ibatis ~— A\ |
Files Batches C @
Databases e Datages
Much of the complexity and risk of applications occurs at the interface
; between technologies — beyond the comprehension of siloed skills
@CASTZOOB

Dispersed Development

Antactica

o CAST 2008

ML L fcast|
The Devil Is in the Interface

Enterprise Applications Middleware | | Web / Client Server Applications
“Presenta-
=3 [[SIEBEL. =
[pme] [=m = tion Tier
Web
Services
[g J
. “L';-: Application Logi‘c &
wl| =Java, C++, .
i Erameworks Struts MVC, Spung
o romEe—o -2, Business
v ‘-rII:mﬂ'I?I h‘.I'IOﬂ DI‘.:'.I:SIW : LO iC
L i | S .
Legacy Applications £les 'F,,e,j“ i’ 9
' Tier
CICSMonltor (Cobol) i
Fuxedo Monitor (C)
ICENTIFIC lﬂw DIVISION. Ve
PROCRAM-ID. .-;'mm - +
amg: B Data Managemeyit Layer
8:; WBEER), ' : EJB.-"_ Hlbem.-ate - Ibatis . .
. > .
She%a:él;ipls > Data
Tier
- ol
= A Database
a |
Files Databases = <
9
ECASTZOOB

ML Lcesr]
Internal Quality Is Often Overlooked

Problem—cCustomers struggle to state functional requirements.
They do not understand non-functional requirements.

‘...afailure to satisfy a non-functional
Q_Hciﬁ{}! requirement can be critical, even

s i catastrophic...non-functional requirements
are sometimes difficult to verify. We cannot
write a test case to verify a system’s
reliability...The ability to associate code to
non-functional properties can be a powerful
weapon in a software engineer’s arsenal.”

10

[©.CAST 2008

self denial

11

[©.CAST 2008

Attacks of

reduces

Stability Anti-Patterns and Patterns

impact Decouplmg mgater"ﬂ
mlddleware -
leads to

L] Jcasr]

Scaling effectsl
ounters -
SLA Inversion I
counters Users
exacerbates m
ocke
Bulkheads N
threads
Chain leads to found near Test harness
counters . mutual
reaction a i = Detects
_ ggravation Integratlon L7 problems
results from violating points
Release It! I
Design and Deploy Steady state leads to leads to
Production- Ready Softuwmre avoids counters
Unbalanced leads to Slow Cascading
capacities responses failures
\ counters
counters m prevents | Circuit
counters
can avoid Ieadls to
| Handshaking |

counters breaker
works with
Unbounded m
result sets

Michael Nygard (2007). Release It!

Application Quality vs. Code Quality

] Jcas

s
!

Application Quality

Code Quality

Code quality is the measure of

12

[©.CAST 2008

individual components for

iy compliance with standards
and best practices in the

context of a specific language

Good code quality # Good application quality

M] Jcasr
m Supplementing Mature Processes

Application Quality Engineering supplements
CMMI to unlock even more business value from
applications

CMMI focus — process improvement — Six Sigma
AQE focus - product improvement — Design for 6o

INNOVATE = Goal-driven improvements

QUANTIZE = Statistical quality mgt.
STANDARDIZE =% Tailorable quality processes

STABILIZE = Project quality practices

13
lecasT 2008

]y §casr|
. The 4th Wave In Software Engineering

What: Architecture, Quality characteristics, Reuse
When: 2005=»

Why: Ensure software is constructed to standards
that meet the lifetime demands placed on it

CMM, ITIL, PMBOK, Agile
When: 1990-2005

Provide a more disciplined environment for
professional work incorporating best practices

Design methods, CASE tools
1980-1990

Give developers better tools and aids for constructing
software systems

3rd & 4th generation languages, structured programming
1965-1980

Give developers greater power for expressing their
programs

jo cAST 2008

] M
'm How Do We Get to Dependable Software
-

National Research Council
Software for Dependable Systems

“As higher levels of assurance are
demanded...testing cannot deliver
the level of confidence required at
areasonable cost.”

; Di?ect Path
to Dependable
Software

“The cost of preventing all failures
will usually be prohibitively
expensive, so a dependable system
will not offer uniform levels of
confidence across all functions.”

“The correctness of the code
is rarely the weakest link.”

@ifsr 2008 Jackson, D. (2009). Communications of the ACM, 52 (4)

[|11
'm Presenting Dependability Cases
-

. . Provide direct evidence that a system
ObJeCtlve satisfies its dependability requirements

stated as about

Dependability Dependability Dependability
goal claims properties

argues provides

Dependability Dependability
case evidence

\
e Auditable / comprises « Tests
e Complete e Proofs

16 e Sound « Analyses

JO CAST 2008

Application

Structural Analysis of Software Quality

Health ' Quality 4 . . !
Factors Indicators QST LEEHES

Class complexity (Inh. depth))
Class complexity (Inh. width)
Method complexity (Param.)
Method complexity (control flow™
SQL Complexity Distribution =
Artifacts with recursive calls
Immediate Impact Robustness File conformity

‘T Dead code
rchitecture Structuredness

Security Controled data access
Coupling distribution

Internal

Quality

Performance ' Complexity

App. Internal Quality

_ _ Modularity
Programming Empty code

. Encapsulation conformity
Practices Inheritance

Package naming
Class naming

Naming Interface naming

]

17
fecasT 2008

c ti Method naming
EIYENEIRS) Attribute naming

Constant naming
Package comment

T—
— T Class comment
Transferability] Documentation Method comment

On-Going Impact | Package size
Class size (methods)

-y S
Changeability Class size (attributes)
Interface size
Method size

Q@qo apod oiy10ads-abenbue| % [ein1d31Yydte +008 er

] Jcas

Allianz Austria’s Maintainability Results

Business Need: Reduce the application management

costs of Allianz Austria’s insurance management system — 300 Allianz @

RFCs and 700,000 lines of code modified every year — used to
serve 10 million customers and process 8 million claims a year.

Solution
4 Enforce Allianz specific application quality rules to stabilize maintainability score
4 Automatically assess and monitor the quality and maintainability of applications
4 Provide standard enforcement reports to help AD teams remediate problems faster
4 Integrate application quality processes into Allianz’ Quality Management System

Benefits

e Maintainability stabilized despite a 40%

I
56% reduction in
defects in 4 years

increase in code volume over 4 years
e Improved delivery on new functionality

Defects /KLOC

by 230% while reducing application
maintenance costs by 20% over 3 years

e 56% reduction in defects in four years

18
o cAsT 2008

2002 2003 2004 2005 2006

iy Jcas|
m Using Measures to Control Quality

Complexity distribution
140
125
100
7h &
50

20
0

Application

Objective 24 JAN-08 21-JAN-0B

Measures should be managed as distributions

Beware arbitrary thresholds—derive them statistically

19
lecasT 2008

ML Lcasr
m Using Measures Diagnostically

Departures from
statistically derived
relationships among
the attributes of a
component indicate
the possibility of

code pathologies

Control Flow Complexity

Size (LOC, FP, E, etc.)

20

JO CAST 2008

10

21

L] Jcasr]

B Business Value & Application Quality
—

Business 4@k Tactical Objectives 4gmmma Application
Value

Maximize standards compliance Health Factors
Improve software readability TRANSEERABILITY
/ Reduce vendor lock-in \"’ allows new teams to quickly
‘ . N begin working with an application
Reduce cost of ownership \‘
e .

X
XI‘%& CHANGEABILITY

inimi Zi Reduce application rewor A makes an application easier and
Minimize IT costs PP N Quicker to modify

Minimize business

WMisdimiiae Fusiness ‘ g Nlaximize application availabili \ ROBUSTNESS
ili ‘/ YMinimize degraded servic ""e/‘:‘;‘ improves application stability &
agl |ty "A l\)'A"(reduces injecting new defects
\ I(“v“;\’ Reduce learning curves ‘/
7

Y
i
Optimize work ‘;ﬁ!‘;
ivi D
productivity \',"\\ Maximize application scalability

R
\\

Reduce modification effort

Accelerate new function delivery PERFORMANCE
Reduces degraded response
times and increases scalability

P
“!\} Maximize speed of response
Maximize | Maximize information retrieval

inimi SECURITY
Minimize unwanted breaches
customer onalty ‘ affects an application’s ability to

Maximize customer confidence prevent unauthorized intrusions

Maximize information protection

[©.CAST 2008

] Jcas

m Consortium for IT Software Quality

CISQO

IT organizations, Outsourcers, Agencies, Experts

22

IT & AD Technical
Executives experts
—— T a

— Engineering Institute L =
DBIECT MANAGEMENT GROUP
Define industry issues Create quality standard
Drive standards adoption P Developer certification
Buildappraiser program Integrate with standards

JO CAST 2008

11

